16 research outputs found

    NINscope, a versatile miniscope for multi-region circuit investigations

    Get PDF
    Miniaturized fluorescence microscopes (miniscopes) have been instrumental to monitor neural signals during unrestrained behavior and their open-source versions have made them affordable. Often, the footprint and weight of open-source miniscopes is sacrificed for added functionality. Here, we present NINscope: a light-weight miniscope with a small footprint that integrates a high-sensitivity image sensor, an inertial measurement unit and an LED driver for an external optogenetic probe. We use it to perform the first concurrent cellular resolution recordings from cerebellum and cerebral cortex in unrestrained mice, demonstrate its optogenetic stimulation capabilities to examine cerebello-cerebral or cortico-striatal connectivity, and replicate findings of action encoding in dorsal striatum. In combination with cross-platform acquisition and control software, our miniscope is a versatile addition to the expanding tool chest of open-source miniscopes that will increase access to multi-region circuit investigations during unrestrained behavior

    Correction:How the COVID-19 pandemic highlights the necessity of animal research (vol 30, pg R1014, 2020)

    Get PDF
    (Current Biology 30, R1014–R1018; September 21, 2020) As a result of an author oversight in the originally published version of this article, a number of errors were introduced in the author list and affiliations. First, the middle initials were omitted from the names of several authors. Second, the surname of Dr. van Dam was mistakenly written as “Dam.” Third, the first name of author Bernhard Englitz was misspelled as “Bernard” and the surname of author B.J.A. Pollux was misspelled as “Pullox.” Finally, Dr. Keijer's first name was abbreviated rather than written in full. These errors, as well as various errors in the author affiliations, have now been corrected online

    NINscope, a versatile miniscope for multi-region circuit investigations

    No full text
    Miniaturized fluorescence microscopes (miniscopes) have been instrumental to monitor neural signals during unrestrained behavior and their open-source versions have made them affordable. Often, the footprint and weight of open-source miniscopes is sacrificed for added functionality. Here, we present NINscope: a light-weight miniscope with a small footprint that integrates a high-sensitivity image sensor, an inertial measurement unit and an LED driver for an external optogenetic probe. We use it to perform the first concurrent cellular resolution recordings from cerebellum and cerebral cortex in unrestrained mice, demonstrate its optogenetic stimulation capabilities to examine cerebello-cerebral or cortico-striatal connectivity, and replicate findings of action encoding in dorsal striatum. In combination with cross-platform acquisition and control software, our miniscope is a versatile addition to the expanding tool chest of open-source miniscopes that will increase access to multi-region circuit investigations during unrestrained behavior

    Myopia control in Mendelian forms of myopia

    Get PDF
    Purpose: To study the effectiveness of high-dose atropine for reducing eye growth in Mendelian myopia in children and mice. Methods: We studied the effect of high-dose atropine in children with progressive myopia with and without a monogenetic cause. Children were matched for age and axial length (AL) in their first year of treatment. We considered annual AL progression rate as the outcome and compared rates with percentile charts of an untreated general population. We treated C57BL/6J mice featuring the myopic phenotype of Donnai–Barrow syndrome by selective inactivation of Lrp2 knock out (KO) and control mice (CTRL) daily with 1% atropine in the left eye and saline in the right eye, from postnatal days 30–56. Ocular biometry was measured using spectral-domain optical coherence tomography. Retinal dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured using high-performance liquid chromatography. Results: Children with a Mendelian form of myopia had average baseline spherical equivalent (SE) –7.6 ± 2.5D and AL 25.8 ± 0.3 mm; children with non-Mendelian myopia had average SE −7.3 ± 2.9 D and AL 25.6 ± 0.9 mm. During atropine treatment, the annual AL progression rate was 0.37 ± 0.08 and 0.39 ± 0.05 mm in the Mendelian myopes and non-Mendelian myopes, respectively. Compared with progression rates of untreated general population (0.47 mm/year), atropine reduced AL progression with 27% in Mendelian myopes and 23% in non-Mendelian myopes. Atropine significantly reduced AL growth in both KO and CTRL mice (male, KO: −40 ± 15; CTRL: −42 ± 10; female, KO: −53 ± 15; CTRL: −62 ± 3 μm). The DA and DOPAC levels 2 and 24 h after atropine treatment were slightly, albeit non-significantly, elevated. Conclusions: High-dose atropine had the same effect on AL in high myopic children with and without a known monogenetic cause. In mice featuring a severe form of Mendelian myopia, atropine reduced AL progression. This suggests that atropine can reduce myopia progression even in the presence of a strong monogenic driver

    NINscope, a versatile miniscope for multi-region circuit investigations

    Get PDF
    Miniaturized fluorescence microscopes (miniscopes) have been instrumental to monitor neural signals during unrestrained behavior and their open-source versions have made them affordable. Often, the footprint and weight of open-source miniscopes is sacrificed for added functionality. Here, we present NINscope: a light-weight miniscope with a small footprint that integrates a high-sensitivity image sensor, an inertial measurement unit and an LED driver for an external optogenetic probe. We use it to perform the first concurrent cellular resolution recordings from cerebellum and cerebral cortex in unrestrained mice, demonstrate its optogenetic stimulation capabilities to examine cerebello-cerebral or cortico-striatal connectivity, and replicate findings of action encoding in dorsal striatum. In combination with cross-platform acquisition and control software, our miniscope is a versatile addition to the expanding tool chest of open-source miniscopes that will increase access to multi-region circuit investigations during unrestrained behavior.Education and Student Affair

    Myopia control in Mendelian forms of myopia

    No full text
    PURPOSE: To study the effectiveness of high-dose atropine for reducing eye growth in Mendelian myopia in children and mice. METHODS: We studied the effect of high-dose atropine in children with progressive myopia with and without a monogenetic cause. Children were matched for age and axial length (AL) in their first year of treatment. We considered annual AL progression rate as the outcome and compared rates with percentile charts of an untreated general population. We treated C57BL/6J mice featuring the myopic phenotype of Donnai-Barrow syndrome by selective inactivation of Lrp2 knock out (KO) and control mice (CTRL) daily with 1% atropine in the left eye and saline in the right eye, from postnatal days 30-56. Ocular biometry was measured using spectral-domain optical coherence tomography. Retinal dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured using high-performance liquid chromatography. RESULTS: Children with a Mendelian form of myopia had average baseline spherical equivalent (SE) -7.6 ± 2.5D and AL 25.8 ± 0.3 mm; children with non-Mendelian myopia had average SE -7.3 ± 2.9 D and AL 25.6 ± 0.9 mm. During atropine treatment, the annual AL progression rate was 0.37 ± 0.08 and 0.39 ± 0.05 mm in the Mendelian myopes and non-Mendelian myopes, respectively. Compared with progression rates of untreated general population (0.47 mm/year), atropine reduced AL progression with 27% in Mendelian myopes and 23% in non-Mendelian myopes. Atropine significantly reduced AL growth in both KO and CTRL mice (male, KO: -40 ± 15; CTRL: -42 ± 10; female, KO: -53 ± 15; CTRL: -62 ± 3 μm). The DA and DOPAC levels 2 and 24 h after atropine treatment were slightly, albeit non-significantly, elevated. CONCLUSIONS: High-dose atropine had the same effect on AL in high myopic children with and without a known monogenetic cause. In mice featuring a severe form of Mendelian myopia, atropine reduced AL progression. This suggests that atropine can reduce myopia progression even in the presence of a strong monogenic driver

    Correction: How the COVID-19 pandemic highlights the necessity of animal research

    No full text
    (Current Biology 30, R1014–R1018; September 21, 2020

    The continued need for animals to advance brain research

    Get PDF
    Policymakers aim to move toward animal-free alternatives for scientific research and have introduced very strict regulations for animal research. We argue that, for neuroscience research, until viable and translational alternatives become available and the value of these alternatives has been proven, the use of animals should not be compromised
    corecore